Aller au contenu directement

Magnetization dependent tunneling conductance of ferromagnetic barriers

Published on November 18, 2021

Recent experiments on van der Waals antiferromagnets have shown that measuring the temperature (T) and magnetic field (H) dependence of the conductance allows their magnetic phase diagram to be mapped. Similarly, experiments on ferromagnetic CrBr3 barriers enabled the Curie temperature to be determined at H = 0, but a precise interpretation of the
magnetoconductance data at H ≠ 0 is conceptually more complex, because at finite H there is no well-defined phase boundary. Here we perform systematic transport measurements on CrBr3 barriers and show that the tunneling magnetoconductance depends on H and T exclusively through the magnetization M(H, T) over the entire temperature range investigated. The phenomenon is reproduced by the spin-dependent Fowler–Nordheim model for tunneling, and is a direct manifestation of the spin splitting of the CrBr3 conduction band. Our analysis unveils a new approach to probe quantitatively different properties of atomically thin ferromagnetic insulators related to their magnetization by performing simple conductance measurements.


Zhe Wang, Ignacio Gutiérrez-Lezama, Dumitru Dumcenco, Nicolas Ubrig, Takashi Taniguchi, Kenji Watanabe, Enrico Giannini, Marco Gibertini  and Alberto F. Morpurgo